

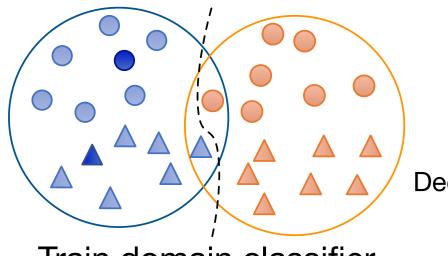
Prototypical Cross-domain Self-supervised Learning for Few-shot Unsupervised Domain Adaptation

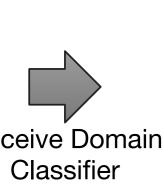
Xiangyu Yue¹*, Zhangwei Zheng²*, Shanghang Zhang¹, Yang Gao³, Trevor Darrell¹, Kurt Keutzer¹, Alberto Sangiovanni-Vincentelli¹

¹University of California, Berkeley ²Nanjing University ³Tsinghua University

Motivation

Previous: Unsupervised Domain Adaptation

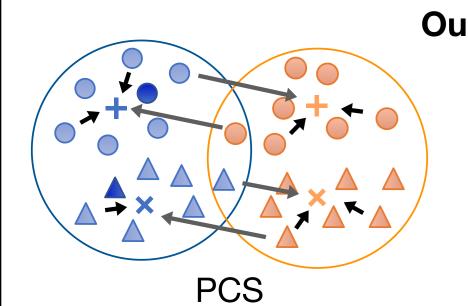

- Fully-labeled Source: sometimes it is hard even to get labels in the source domain, e.g. medical Imaging and pixel-level annotations
- Unlabeled Target

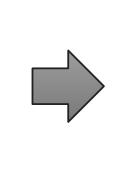

Few-shot Unsupervised Domain Adaptation

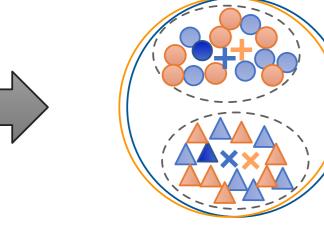
- Source with few-shot labels
- Unlabeled Target

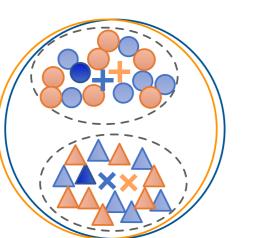
Overall Comparison

Previous method

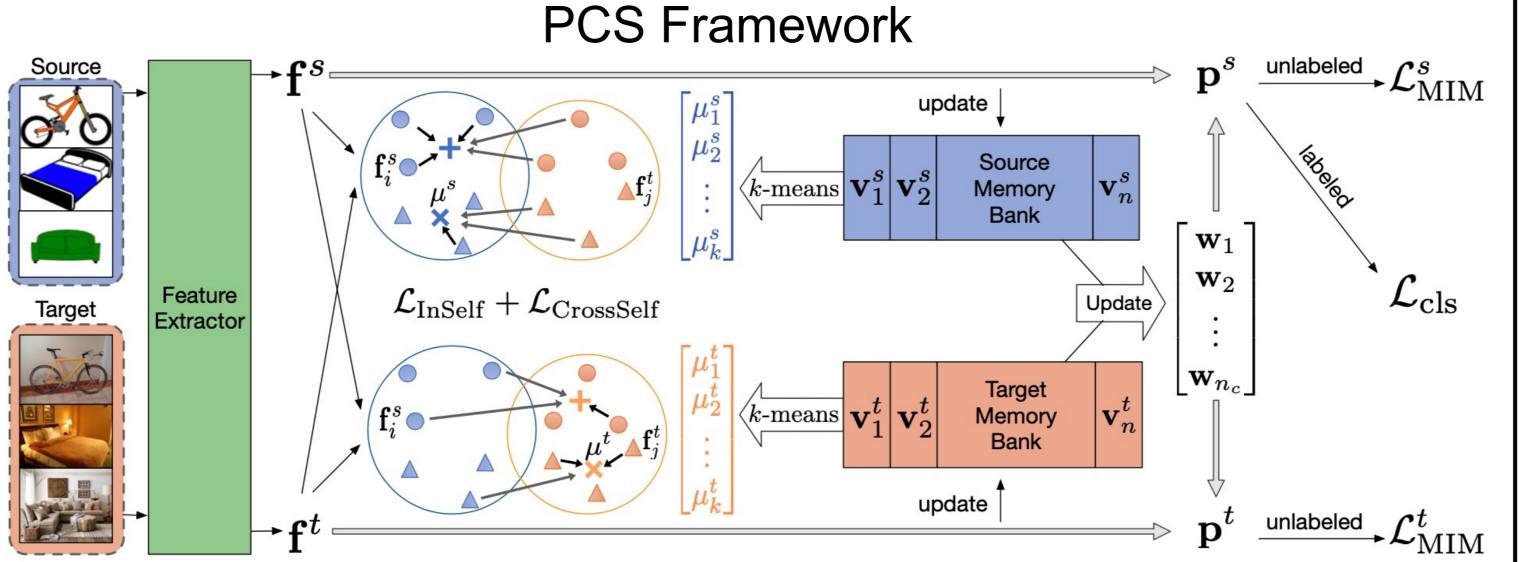





Train domain classifier


Update features


With few-shot labels in the source, it is hard to learn a good classifier in both source and target.



After adaptation

Our method perform prototypical SSL both in-domain and cross-domain and learn better classifier in both domains.

Method

In-Domain SSL

$$P_{i,j}^s = \frac{\exp(\mu_j^s \cdot \mathbf{f}_i^s / \phi)}{\sum_{r=1}^k \exp(\mu_r^s \cdot \mathbf{f}_i^s / \phi)} \qquad \mathcal{L}_{PC} = \sum_{i=1}^{N_s + N_{su}} \mathcal{L}_{CE}(P_i^s, c_s(i)) + \sum_{i=1}^{N_{tu}} \mathcal{L}_{CE}(P_i^t, c_t(i))$$

Cross-Domain SSL

$$P_{i,j}^{s \to t} = \frac{\exp(\mu_j^t \cdot \mathbf{f}_i^s / \tau)}{\sum_{r=1}^k \exp(\mu_r^t \cdot \mathbf{f}_i^s / \tau)} \qquad \mathcal{L}_{\text{CrossSelf}} = \sum_{i=1}^{N_s + N_{su}} H(P_i^{s \to t}) + \sum_{i=1}^{N_{tu}} H(P_i^{t \to s})$$

Adaptive Prototypical Classifier Learning

$$\hat{\mathbf{w}}_{i}^{s} = \frac{1}{|\mathcal{D}_{s^{+}}^{(i)}|} \sum_{\mathbf{x} \in \mathcal{D}_{s^{+}}^{(i)}} m(\mathbf{x}); \hat{\mathbf{w}}_{i}^{t} = \frac{1}{|\mathcal{D}_{tu}^{(i)}|} \sum_{\mathbf{x} \in \mathcal{D}_{tu}^{(i)}} m(\mathbf{x}) \quad \mathbf{w}_{i} = \begin{cases} unit(\hat{\mathbf{w}}_{i}^{s}) & \text{if } |\mathcal{D}_{tu}^{(i)}| < t_{w} \\ unit(\hat{\mathbf{w}}_{i}^{t}) & \text{otherwise} \end{cases}$$

Results

Method	Office: Target Acc. on 1-shot / 3-shots								
	$A \rightarrow D$	$A \rightarrow W$	$D \rightarrow A$	$D \rightarrow W$	$W \rightarrow A$	$W{\to}D$	Avg		
SO	27.5 / 49.2	28.7 / 46.3	40.9 / 55.3	65.2 / 85.5	41.1 / 53.8	62.0 / 86.1	44.2 / 62.7		
MME [57]	21.5 / 51.0	12.2 / 54.6	23.1 / 60.2	60.9 / 89.7	14.0 / 52.3	62.4 / 91.4	32.3 / 66.5		
CDAN [42]	11.2 / 43.7	6.2 / 50.1	9.1 / 65.1	54.8 / 91.6	10.4 / 57.0	41.6 / 89.8	22.2 / 66.2		
CAN [35]	25.3 / 48.6	26.4 / 45.3	23.9 / 41.2	69.4 / 78.2	21.2 / 39.3	67.3 / 82.3	38.9 / 55.8		
MDDIA [32]	45.0 / 62.9	54.5 / 65.4	55.6 / 67.9	84.4 / 93.3	53.4 / 70.3	79.5 / 93.2	62.1 / 75.5		
CDS [36]	33.3 / 57.0	35.2 / 58.6	52.0 / 67.6	59.0 / 86.0	46.5 / 65.7	57.4 / 81.3	47.2 / 69.3		
DANN + ENT [17]	32.5 / 57.6	37.2 / 54.1	36.9 / 54.1	70.1 / 87.4	43.0 / 51.4	58.8 / 89.4	46.4 / 65.7		
MME + ENT	37.6 / 69.5	42.5 / 68.3	48.6 / 66.7	73.5 / 89.8	47.2 / 63.2	62.4 / 95.4	52.0 / 74.1		
CDAN + ENT	31.5 / 68.3	26.4 / 71.8	39.1 / 57.3	70.4 / 88.2	37.5 / 61.5	61.9 / 93.8	44.5 / 73.5		
CDS + ENT	40.4 / 61.2	44.7 / 66.7	<u>66.4</u> / 73.1	71.6 / 90.6	58.6 / 71.8	69.3 / 86.1	58.5 / 74.9		
CDS + MME + ENT	39.4 / 61.6	43.6 / 66.3	66.0 / <u>74.5</u>	75.7 / 92.1	53.1 / 73.0	70.9 / 90.6	58.5 / 76.3		
CDS / MME + ENT^{\dagger}	<u>55.4</u> / 75.7	57.2 / 77.2	62.8 / 69.7	<u>84.9</u> / 92.1	<u>62.6</u> / <u>69.9</u>	<u>77.7</u> / 95.4	65.3 / 80.0		
$CDS / CDAN + ENT^{\dagger}$	53.8 / <u>78.1</u>	<u>65.6</u> / <u>79.8</u>	59.5 / 70.7	83.0 / <u>93.2</u>	57.4 / 64.5	77.1 / <u>97.4</u>	<u>66.1</u> / <u>80.6</u>		
PCS (Ours)	60.2 / 78.2	69.8 / 82.9	76.1 / 76.4	90.6 / 94.1	71.2 / 76.3	91.8 / 96.0	76.6 / 84.0		
Improvement	+4.8 / +0.1	+4.2 / +3.1	+9.7 / +1.9	+5.7 / +0.9	+8.6 / +6.4	+14.1 / -1.4	+10.5 / +3.4		

Method	VisDA: Target Acc. (%) 0.1% Labeled 1% Labele 47.9 51.4 55.6 69.4 58.0 61.5	
Wellod	0.1% Labeled	1% Labele
SO	47.9	51.4
MME [57]	55.6	69.4
CDAN [42]	58.0	61.5
MDDIA [32]	68.9	71.3
CAN [35]	51.3	57.2
CDS [36]	34.2	67.5
DANN + ENT [17]	44.5	50.2
MME + ENT	54.0	66.1
CDAN + ENT	57.7	58.1
CDS + ENT	49.8	75.3
CDS + ENT + MME	60.0	<u>78.3</u>
CDS / MME + ENT †	62.5	69.4
$CDS / CDAN + ENT^{\dagger}$	<u>69.0</u>	69.1
PCS (Ours)	78.0	79.0
Improvement	+9.0	+0.7

Method	DomainNet: Target Acc. (%)								
Method	R→C	R→P	R→S	P→C	P→R	C→S	S→P	Avg	
		1-shot	labeled s	ource					
SO	18.4	30.6	16.7	16.2	28.9	12.7	10.5	19.1	
MME [57]	13.8	29.2	9.7	16.0	26.0	13.4	14.4	17.5	
CDAN [42]	16.0	25.7	12.9	12.6	19.5	7.2	8.0	14.6	
MDDIA [32]	18.0	<u>30.6</u>	15.9	15.4	27.4	9.3	10.2	18.1	
CAN [35]	18.3	22.1	16.7	13.2	23.9	11.1	12.1	16.8	
CDS [36]	16.7	24.4	11.1	14.1	15.9	13.4	19.0	16.4	
CDS + ENT	<u>21.7</u>	30.1	<u>18.2</u>	<u>17.4</u>	20.5	18.6	<u>22.7</u>	21.5	
CDS + MME + ENT	21.2	28.8	15.5	15.8	17.6	<u>19.0</u>	20.7	19.8	
PCS (Ours)	39.0	51.7	39.8	26.4	38.8	23.7	23.6	34.7	
Improvement	+17.3	+21.1	+21.6	+9.0	+9.9	+4.7	+0.9	+13.	
		3-shots	labeled :	source					
SO	30.2	44.2	25.7	24.6	49.8	24.2	23.2	31.7	
MME [57]	22.8	46.5	14.5	25.1	50.0	20.1	24.9	29.1	
CDAN [42]	30.0	40.1	21.7	21.4	40.8	17.1	19.7	27.3	
MDDIA [32]	41.4	50.7	37.4	31.4	<u>52.9</u>	23.1	24.1	37.3	
CAN [35]	28.1	33.5	25	24.7	46.9	23.3	20.1	28.8	
CDS [36]	35.0	43.8	36.7	34.1	36.8	31.1	34.5	36.0	
CDS + ENT	44.5	<u>52.2</u>	40.9	<u>40.0</u>	47.2	33.0	<u>40.1</u>	42.5	
CDS + MME + ENT	43.8	54.9	<u>41.1</u>	38.9	45.9	<u>32.8</u>	38.7	42.3	
PCS (Ours)	45.2	59.1	41.9	41.0	66.6	31.9	37.4	46.1	
Improvement	+0.7	+6.9	+0.8	+1.0	+13.7	-0.9	-2.7	+3.6	

Summary

We propose a novel Prototypical Crossdomain Self-supervised learning framework (PCS) for few-shot unsupervised Domain Adaptation, setting a new State of the Art for FUDA.

→ Project Link