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Abstract

Unsupervised Domain Adaptation (UDA) transfers pre-
dictive models from a fully-labeled source domain to an
unlabeled target domain. In some applications, however,
it is expensive even to collect labels in the source do-
main, making most previous works impractical. To cope
with this problem, recent work performed instance-wise
cross-domain self-supervised learning, followed by an ad-
ditional fine-tuning stage. However, the instance-wise self-
supervised learning only learns and aligns low-level dis-
criminative features. In this paper, we propose an end-
to-end Prototypical Cross-domain Self-Supervised Learn-
ing (PCS) framework for Few-shot Unsupervised Domain
Adaptation (FUDA). PCS not only performs cross-domain
low-level feature alignment, but it also encodes and aligns
semantic structures in the shared embedding space across
domains. Our framework captures category-wise seman-
tic structures of the data by in-domain prototypical con-
trastive learning; and performs feature alignment through
cross-domain prototypical self-supervision. Compared with
state-of-the-art methods, PCS improves the mean classifi-
cation accuracy over different domain pairs on FUDA by
10.5%, 3.5%, 9.0%, and 13.2% on Office, Office-Home,
VisDA-2017, and DomainNet, respectively.

1. Introduction
Deep Learning has achieved remarkable performance in

various computer vision tasks, such as image classifica-
tion [30, 32] and semantic segmentation [43, 78, 8]. De-
spite high accuracy, deep neural networks trained on spe-
cific datasets often fail to generalize to new domains owing
to the domain shift problem [67, 15, 68]. Unsupervised do-
main adaptation (UDA) transfers predictive models from a
fully-labeled source domain to an unlabeled target domain.
Although it is challenging with no label information in the
target domain, many UDA methods [68, 31, 44, 18] could
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Figure 1: We address the task of few-shot unsupervised domain
adaptation. Top: Existing domain-classifier based methods align
source and target distributions but fail to extract discriminative fea-
tures due to lack of labeled data. Bottom: Our method estimates
prototypes for in-domain and cross-domain self-supervised learn-
ing to extract domain-aligned discriminative features.

achieve high accuracy on the target domain using the abun-
dant explicit supervision in source domain, together with
the unlabeled target samples for domain alignment.

In some real-world applications, however, providing
large-scale annotations even in the source domain is often
challenging due to the high cost and difficulty of annotation.
Taking medical imaging for instance, each image of the Di-
abetic Retinopathy dataset [28] is annotated by a panel of
7 or 8 U.S. board-certified ophthalmologists, with a total
group of 54 doctors. Thus practically it is too stringent to
assume the availability of source data with abundant labels.

In this paper, to cope with the labeling costs of the
source domain, we instead consider a few-shot unsuper-
vised domain adaptation (FUDA) setting, where only an ex-
tremely small fraction of source samples are labeled, while
all the rest source and target samples remain unlabeled.



Most state-of-the-art UDA methods align source and tar-
get features by minimizing some form of distribution dis-
tances [44, 45, 64, 18], and learn the discriminative rep-
resentation by minimizing the supervision loss on fully-
labeled source domain data. In FUDA, however, since we
have a very limited number of labeled source samples, it is
much harder to learn discriminative features in the source
domain, not to mention in the target domain.

Several recent papers [29, 10, 27, 52, 73] on self-
supervised learning (SSL) present promising representation
learning results on images from a single domain and [39]
further extended to perform SSL across two domains for
better domain adaptation performance. Despite the im-
proved performance, the instance-based method in [39] has
some fundamental weaknesses. First, the semantic structure
of the data is not encoded by the learned structure. This is
because the in-domain self-supervision in [39] treats two
instances as negative pairs as long as they are from differ-
ent samples, regardless of the semantic similarity. Conse-
quently, many instances sharing the same semantic are un-
desirably pushed apart in the feature space. Second, the
cross-domain instance-to-instance matching in [39] is very
sensitive to abnormal samples. Imagine a case where the
embeddings of source and target samples are far apart (i.e.
the domain gap is large) and one abnormal source sample
is mapped closer to all target samples than any other source
sample. Then the method in [39] would match all target
samples to the same source sample (cf. Figure 3). For a
given sample, the matched sample in the other domain may
change drastically during the training procedure, making
the optimization harder to converge. Third, the two-stage
pipeline (i.e. SSL followed by domain adaptation) is com-
plicated and experiments show that the optimal DA methods
for different datasets are different. As a result, the training
is rather cumbersome and it is unclear how to choose the op-
timal DA method in the second stage for different datasets.

In this paper, we propose Prototypical Cross-domain
Self-supervised learning, a novel single-stage framework
for FUDA that unifies representation learning and domain
alignment with few-shot labeled source samples. PCS con-
tains three major components to learn both discriminative
and domain-invariant features. First, PCS performs in-
domain prototypical self-supervision to implicitly encode
the semantic structure of data into the embedding space.
This is motivated by [41], but we further leverage the known
semantic information of the task and learn better seman-
tic structure in each domain. Second, PCS performs cross-
domain instance-to-prototype matching to transfer knowl-
edge from source to the target in a more robust manner. In-
stead of instance-to-instance matching, matching a sample
to a prototype (i.e. representative embedding for a group
of instances that are semantically similar) is more robust
to abnormal instances in the other domain and makes the

optimization converge faster and more smoothly. Third,
PCS unifies prototype learning with cosine classifier and
update cosine classifier adaptively with source and target
prototypes. transfers from source prototypes to target proto-
types for better performance on the target domain. In order
to further mitigate the effect of cross-domain mismatching,
we perform entropy maximization to obtain a more diversi-
fied output. We show that together with entropy minimiza-
tion, this is equivalent to maximizing the mutual informa-
tion (MI) between input image and the network prediction.

To summarize, our contributions are three-fold:
• We propose a novel Prototypical Cross-domain Self-

supervised learning framework (PCS) for few-shot un-
supervised Domain Adaptation.

• We propose to leverage prototypes to perform bet-
ter semantic structure learning, discriminative feature
learning, and cross-domain alignment in a unified, un-
supervised and adaptive manner.

• While it is hard to choose the optimal domain adapta-
tion method in the complex two-stage framework [39],
PCS can be easily trained in an end-to-end matter,
and outperforms all state-of-the-art methods by a large
margin across multiple benchmark datasets.

2. Related Work
Domain Adaptation. Unsupervised Domain Adaptation
(UDA) [24] addresses the problem of transferring knowl-
edge from a fully-labeled source domain to an unlabeled
target domain. Most UDA methods have focused on
feature distribution alignment. Discrepancy-based meth-
ods explicitly compute the Maximum Mean Discrepancy
(MMD) [26] between the source and the target to align
the two domains [44, 69, 46]. Long et al. [47] proposed
to align the joint distributions using the Joint MMD cri-
terion. Sun et al. [64] and Zhuo et al. [80] further pro-
posed to align second-order statistics of source and target
features. With the development of Generative Adversarial
Networks [23], additional papers proposed to perform do-
main alignment in the feature space with adversarial learn-
ing [17, 68, 31, 74, 45, 62]. Recently, image translation
methods, e.g. [79, 42] have been adopted to further im-
prove domain adaptation by performing pixel-level align-
ment [31, 5, 58, 50, 76, 61, 63]. Instead of explicit feature
alignment, Saito et al. [60] proposed minimax entropy for
adaptation. While these methods have full supervision on
the source domain, similar to [39], we focus on a new adap-
tation setting with few source labels.
Self-supervised Learning. Self-supervised learning (SSL)
is a subset of unsupervised learning methods where super-
vision is automatically generated from the data [36, 13,
77, 51, 22, 71]. One of the most common strategies for
SSL is handcrafting auxiliary pretext tasks predicting fu-
ture, missing or contextual information. In particular, im-



Source 
Memory

Bank
vs

1
<latexit sha1_base64="x/MnbJ+zobXkvo/AvLM3pLWlLsA=">AAAB9XicbVDLTgIxFL3jE/GFunTTQExYkRlc4JLoxiUm8khgIJ3SgYZOZ9J2MGTCf5gYFxrj1u9w687ox9gBFgqepMnJOffmnh4v4kxp2/601tY3Nre2MzvZ3b39g8Pc0XFDhbEktE5CHsqWhxXlTNC6ZprTViQpDjxOm97oKvWbYyoVC8WtnkTUDfBAMJ8RrI3U7QRYDz0/GU97Tlf1cgW7ZM+AVomzIIVqvvj9VXl/qPVyH51+SOKACk04Vqrt2JF2Eyw1I5xOs51Y0QiTER7QtqECB1S5ySz1FJ0ZpY/8UJonNJqpvzcSHCg1CTwzmaZUy14q/ue1Y+1fuAkTUaypIPNDfsyRDlFaAeozSYnmE0MwkcxkRWSIJSbaFJU1JTjLX14ljXLJOS+Vb0wblzBHBk4hD0VwoAJVuIYa1IGAhHt4gmfrznq0XqzX+eiatdg5gT+w3n4A5wKWfw==</latexit>

vs
2

<latexit sha1_base64="o9aj6m+VU5VV76kiV8/oULq0Uq0=">AAAB9XicbVDLTgIxFL3jE/GFunTTQExYkRlc4JLoxiUm8khgIJ3SgYZOZ9J2MGTCf5gYFxrj1u9w687ox9gBFgqepMnJOffmnh4v4kxp2/601tY3Nre2MzvZ3b39g8Pc0XFDhbEktE5CHsqWhxXlTNC6ZprTViQpDjxOm97oKvWbYyoVC8WtnkTUDfBAMJ8RrI3U7QRYDz0/GU975a7q5Qp2yZ4BrRJnQQrVfPH7q/L+UOvlPjr9kMQBFZpwrFTbsSPtJlhqRjidZjuxohEmIzygbUMFDqhyk1nqKTozSh/5oTRPaDRTf28kOFBqEnhmMk2plr1U/M9rx9q/cBMmolhTQeaH/JgjHaK0AtRnkhLNJ4ZgIpnJisgQS0y0KSprSnCWv7xKGuWSc14q35g2LmGODJxCHorgQAWqcA01qAMBCffwBM/WnfVovViv89E1a7FzAn9gvf0A6IiWgA==</latexit>

vs
n

<latexit sha1_base64="0ipoGMvCe5wHziBf1niiNMLnuVw=">AAAB+XicbVDLSsNAFL3xWesr6tJNaBG6Kkld1GXRjcsK9gFtDJPppB06mYSZSaGEfIluXCji1q9w6070Y5y0XWjrgYHDOfdyzxw/ZlQq2/401tY3Nre2CzvF3b39g0Pz6Lgto0Rg0sIRi0TXR5IwyklLUcVINxYEhT4jHX98lfudCRGSRvxWTWPihmjIaUAxUlryTLMfIjXyg3SSeSnP7qRnlu2qPYO1SpwFKTdKle+v+vt90zM/+oMIJyHhCjMkZc+xY+WmSCiKGcmK/USSGOExGpKephyFRLrpLHlmnWllYAWR0I8ra6b+3khRKOU09PVknlMue7n4n9dLVHDhppTHiSIczw8FCbNUZOU1WAMqCFZsqgnCguqsFh4hgbDSZRV1Cc7yl1dJu1Z1zqu1G93GJcxRgFMoQQUcqEMDrqEJLcAwgQd4gmcjNR6NF+N1PrpmLHZO4A+Mtx+KWZf5</latexit>

Target 
Memory

Bank
vt

n
<latexit sha1_base64="4y0gZHT3LXt01OkvOSUVtdmJIek=">AAAB+XicbVDLSsNAFL3xWesr6tJNaBG6Kkld1GXRjcsK9gFtDJPppB06mYSZSaGEfIluXCji1q9w6070Y5y0XWjrgYHDOfdyzxw/ZlQq2/401tY3Nre2CzvF3b39g0Pz6Lgto0Rg0sIRi0TXR5IwyklLUcVINxYEhT4jHX98lfudCRGSRvxWTWPihmjIaUAxUlryTLMfIjXyg3SSeSnP7pRnlu2qPYO1SpwFKTdKle+v+vt90zM/+oMIJyHhCjMkZc+xY+WmSCiKGcmK/USSGOExGpKephyFRLrpLHlmnWllYAWR0I8ra6b+3khRKOU09PVknlMue7n4n9dLVHDhppTHiSIczw8FCbNUZOU1WAMqCFZsqgnCguqsFh4hgbDSZRV1Cc7yl1dJu1Z1zqu1G93GJcxRgFMoQQUcqEMDrqEJLcAwgQd4gmcjNR6NF+N1PrpmLHZO4A+Mtx+L3Zf6</latexit>

vt
1

<latexit sha1_base64="5hTSouIfcTDmq4EctTV47TLnrkU=">AAAB+XicbVC7SgNBFJ31GeNr1dJmSBBShd1YxDJoYxnBPCBZl9nJbDJk9sHM3UBY9ku0sVDE1q+wtRP9GGeTFJp4YOBwzr3cM8eLBVdgWZ/G2vrG5tZ2Yae4u7d/cGgeHbdVlEjKWjQSkex6RDHBQ9YCDoJ1Y8lI4AnW8cZXud+ZMKl4FN7CNGZOQIYh9zkloCXXNPsBgZHnp5PMTe3sDlyzbFWtGfAqsRek3ChVvr/q7/dN1/zoDyKaBCwEKohSPduKwUmJBE4Fy4r9RLGY0DEZsp6mIQmYctJZ8gyfaWWA/UjqFwKeqb83UhIoNQ08PZnnVMteLv7n9RLwL5yUh3ECLKTzQ34iMEQ4rwEPuGQUxFQTQiXXWTEdEUko6LKKugR7+curpF2r2ufV2o1u4xLNUUCnqIQqyEZ11EDXqIlaiKIJekBP6NlIjUfjxXidj64Zi50T9AfG2w8uspe9</latexit>

vt
2

<latexit sha1_base64="olXNtEx3uernq3O0+lXihrwXNUs=">AAAB+XicbVDLSsNAFJ34rPUVdekmtAhdlaQu6rLoxmUF+4A2hsl00g6dTMLMTaGEfIluXCji1q9w6070Y5y0XWjrgYHDOfdyzxw/5kyBbX8aa+sbm1vbhZ3i7t7+waF5dNxWUSIJbZGIR7LrY0U5E7QFDDjtxpLi0Oe044+vcr8zoVKxSNzCNKZuiIeCBYxg0JJnmv0Qw8gP0knmpbXsDjyzbFftGaxV4ixIuVGqfH/V3++bnvnRH0QkCakAwrFSPceOwU2xBEY4zYr9RNEYkzEe0p6mAodUuekseWadaWVgBZHUT4A1U39vpDhUahr6ejLPqZa9XPzP6yUQXLgpE3ECVJD5oSDhFkRWXoM1YJIS4FNNMJFMZ7XICEtMQJdV1CU4y19eJe1a1Tmv1m50G5dojgI6RSVUQQ6qowa6Rk3UQgRN0AN6Qs9GajwaL8brfHTNWOycoD8w3n4AMDmXvg==</latexit>

Update

�

����

µ
s
1

µ
s
2
...

µ
s
k

�

����

<latexit sha1_base64="WSGZzJH/2bB8hlxOsPPLjXAHicU="></latexit>

�

����

µ
t
1

µ
t
2
...

µ
t
k

�

����

<latexit sha1_base64="biRS6rMI8HxsheJ1v4zPbeAz0gM="></latexit>

Source

Target Feature
Extractor

labeled

update

update

fs
i

<latexit sha1_base64="p3uqb3y4AqQXCGYr9W45/aTZcTM=">AAAB9XicbVDLTgIxFL2DL8QX6tJNAzFhRWZwgUuiG5eYyCOBgXRKBxo6nUnb0ZAJ/2FiXGiMW7/DrTujH2MHWCh4kiYn59ybe3q8iDOlbfvTyqytb2xuZbdzO7t7+wf5w6OmCmNJaIOEPJRtDyvKmaANzTSn7UhSHHictrzxZeq3bqlULBQ3ehJRN8BDwXxGsDZSrxtgPfL8xJ/2WU/180W7bM+AVomzIMVaofT9VX1/qPfzH91BSOKACk04Vqrj2JF2Eyw1I5xOc91Y0QiTMR7SjqECB1S5ySz1FJ0aZYD8UJonNJqpvzcSHCg1CTwzmaZUy14q/ud1Yu2fuwkTUaypIPNDfsyRDlFaARowSYnmE0MwkcxkRWSEJSbaFJUzJTjLX14lzUrZOStXrk0bFzBHFk6gACVwoAo1uII6NICAhHt4gmfrznq0XqzX+WjGWuwcwx9Ybz8j0Zan</latexit> f t
j

<latexit sha1_base64="t/WHpreNZCqPIQ94TP5yI0DAgrU=">AAAB9XicbVC7SgNBFL0bXzG+opY2i0EQhLAbCy2DNpYRzAPyYnYym4yZnV1m7iphyRf4AzYWSrD1X+z8EHtnkxSaeGDgcM693DPHiwTX6DhfVmZldW19I7uZ29re2d3L7x/UdBgryqo0FKFqeEQzwSWrIkfBGpFiJPAEq3vD69SvPzCleSjvcBSxdkD6kvucEjRSpxUQHHh+4o+79x3s5gtO0ZnCXibunBTKZ9+TJ1aIKt38Z6sX0jhgEqkgWjddJ8J2QhRyKtg414o1iwgdkj5rGipJwHQ7maYe2ydG6dl+qMyTaE/V3xsJCbQeBZ6ZTFPqRS8V//OaMfqX7YTLKEYm6eyQHwsbQzutwO5xxSiKkSGEKm6y2nRAFKFoisqZEtzFLy+TWqnonhdLt6aNK5ghC0dwDKfgwgWU4QYqUAUKCp7hFd6sR+vFmljvs9GMNd85hD+wPn4At7CWVA==</latexit>

µ
s

<latexit sha1_base64="3mmfo+qpwz/9F1XvB6mZgjymdEE=">AAAB9XicbVDLSgMxFL1TX7W+qi4VCRbBVZmpC10W3bhswT6gMy2ZNNOGZjJDklHK0KX/4MaFIm7d9jvc+Q3+hOljoa0HAodz7uWeHD/mTGnb/rIyK6tr6xvZzdzW9s7uXn7/oK6iRBJaIxGPZNPHinImaE0zzWkzlhSHPqcNf3Az8Rv3VCoWiTs9jKkX4p5gASNYG6nthlj3/SB1w2TUVp18wS7aU6Bl4sxJoXw8rn4/nowrnfyn241IElKhCcdKtRw71l6KpWaE01HOTRSNMRngHm0ZKnBIlZdOU4/QmVG6KIikeUKjqfp7I8WhUsPQN5OTlGrRm4j/ea1EB1deykScaCrI7FCQcKQjNKkAdZmkRPOhIZhIZrIi0scSE22KypkSnMUvL5N6qehcFEtV08Y1zJCFIziFc3DgEspwCxWoAQEJT/ACr9aD9Wy9We+z0Yw13zmEP7A+fgD7VpaG</latexit>

fs
i

<latexit sha1_base64="p3uqb3y4AqQXCGYr9W45/aTZcTM=">AAAB9XicbVDLTgIxFL2DL8QX6tJNAzFhRWZwgUuiG5eYyCOBgXRKBxo6nUnb0ZAJ/2FiXGiMW7/DrTujH2MHWCh4kiYn59ybe3q8iDOlbfvTyqytb2xuZbdzO7t7+wf5w6OmCmNJaIOEPJRtDyvKmaANzTSn7UhSHHictrzxZeq3bqlULBQ3ehJRN8BDwXxGsDZSrxtgPfL8xJ/2WU/180W7bM+AVomzIMVaofT9VX1/qPfzH91BSOKACk04Vqrj2JF2Eyw1I5xOc91Y0QiTMR7SjqECB1S5ySz1FJ0aZYD8UJonNJqpvzcSHCg1CTwzmaZUy14q/ud1Yu2fuwkTUaypIPNDfsyRDlFaARowSYnmE0MwkcxkRWSEJSbaFJUzJTjLX14lzUrZOStXrk0bFzBHFk6gACVwoAo1uII6NICAhHt4gmfrznq0XqzX+WjGWuwcwx9Ybz8j0Zan</latexit> f t
j

<latexit sha1_base64="t/WHpreNZCqPIQ94TP5yI0DAgrU=">AAAB9XicbVC7SgNBFL0bXzG+opY2i0EQhLAbCy2DNpYRzAPyYnYym4yZnV1m7iphyRf4AzYWSrD1X+z8EHtnkxSaeGDgcM693DPHiwTX6DhfVmZldW19I7uZ29re2d3L7x/UdBgryqo0FKFqeEQzwSWrIkfBGpFiJPAEq3vD69SvPzCleSjvcBSxdkD6kvucEjRSpxUQHHh+4o+79x3s5gtO0ZnCXibunBTKZ9+TJ1aIKt38Z6sX0jhgEqkgWjddJ8J2QhRyKtg414o1iwgdkj5rGipJwHQ7maYe2ydG6dl+qMyTaE/V3xsJCbQeBZ6ZTFPqRS8V//OaMfqX7YTLKEYm6eyQHwsbQzutwO5xxSiKkSGEKm6y2nRAFKFoisqZEtzFLy+TWqnonhdLt6aNK5ghC0dwDKfgwgWU4QYqUAUKCp7hFd6sR+vFmljvs9GMNd85hD+wPn4At7CWVA==</latexit>

µ
t

<latexit sha1_base64="lCPBIAro/F6LRWRhJ1vKFgmf6bE=">AAAB9XicbVDLSgMxFL1TX7W+qi7dBIvgqsxUQZdFNy4r2Ae005JJM21okhmSjFKG/ocbF4q49V/c+Tdm2llo64HA4Zx7uScniDnTxnW/ncLa+sbmVnG7tLO7t39QPjxq6ShRhDZJxCPVCbCmnEnaNMxw2okVxSLgtB1MbjO//UiVZpF8MNOY+gKPJAsZwcZK/Z7AZhyEaU8ks74ZlCtu1Z0DrRIvJxXI0RiUv3rDiCSCSkM41rrrubHxU6wMI5zOSr1E0xiTCR7RrqUSC6r9dJ56hs6sMkRhpOyTBs3V3xspFlpPRWAns5R62cvE/7xuYsJrP2UyTgyVZHEoTDgyEcoqQEOmKDF8agkmitmsiIyxwsTYokq2BG/5y6ukVat6F9Xa/WWlfpPXUYQTOIVz8OAK6nAHDWgCAQXP8ApvzpPz4rw7H4vRgpPvHMMfOJ8/D+qS4A==</latexit>

k-means
<latexit sha1_base64="3rKgNUr1iKGeUuY70rDH4ftXYrE=">AAAB9XicbVDLSgNBEJz1GeMr6tHLYhC8GHajoMegF48RzAOSGGYnvcmQmdllplcNS/7DiwdFvPov3vwbJ8keNLGgoajqprsriAU36HnfztLyyuraem4jv7m1vbNb2NuvmyjRDGosEpFuBtSA4ApqyFFAM9ZAZSCgEQyvJ37jAbThkbrDUQwdSfuKh5xRtNL9sI3whOmpBKrMuFsoeiVvCneR+BkpkgzVbuGr3YtYIkEhE9SYlu/F2EmpRs4EjPPtxEBM2ZD2oWWpohJMJ51ePXaPrdJzw0jbUuhO1d8TKZXGjGRgOyXFgZn3JuJ/XivB8LKTchUnCIrNFoWJcDFyJxG4Pa6BoRhZQpnm9laXDaimDG1QeRuCP//yIqmXS/5ZqXx7XqxcZXHkyCE5IifEJxekQm5IldQII5o8k1fy5jw6L8678zFrXXKymQPyB87nD/YYks8=</latexit>

ps
<latexit sha1_base64="/2QNwW+fBOgFqHew+V0hjFcq20w=">AAAB83icbVDLSgMxFL1TX7W+qi7dBIvgqsxUQZdFNy4r2Ad0xpJJM21oJhOSjFCG/oYbF4q49Wfc+Tdm2llo64HA4Zx7uScnlJxp47rfTmltfWNzq7xd2dnd2z+oHh51dJIqQtsk4YnqhVhTzgRtG2Y47UlFcRxy2g0nt7nffaJKs0Q8mKmkQYxHgkWMYGMl34+xGYdRJmePelCtuXV3DrRKvILUoEBrUP3yhwlJYyoM4VjrvudKE2RYGUY4nVX8VFOJyQSPaN9SgWOqg2yeeYbOrDJEUaLsEwbN1d8bGY61nsahncwz6mUvF//z+qmJroOMCZkaKsjiUJRyZBKUF4CGTFFi+NQSTBSzWREZY4WJsTVVbAne8pdXSadR9y7qjfvLWvOmqKMMJ3AK5+DBFTThDlrQBgISnuEV3pzUeXHenY/FaMkpdo7hD5zPH4H5kf0=</latexit>

pt
<latexit sha1_base64="9AQQvZ6e1m3U/rlTBB4G7RmzTuo=">AAAB83icbVDLSgMxFM3UV62vqks3wSK4KjNV0GXRjcsK9gGdsWTSTBuayYTkjlCG/oYbF4q49Wfc+Tdm2llo64HA4Zx7uScnVIIbcN1vp7S2vrG5Vd6u7Ozu7R9UD486Jkk1ZW2aiET3QmKY4JK1gYNgPaUZiUPBuuHkNve7T0wbnsgHmCoWxGQkecQpASv5fkxgHEaZmj3CoFpz6+4ceJV4BamhAq1B9csfJjSNmQQqiDF9z1UQZEQDp4LNKn5qmCJ0Qkasb6kkMTNBNs88w2dWGeIo0fZJwHP190ZGYmOmcWgn84xm2cvF/7x+CtF1kHGpUmCSLg5FqcCQ4LwAPOSaURBTSwjV3GbFdEw0oWBrqtgSvOUvr5JOo+5d1Bv3l7XmTVFHGZ2gU3SOPHSFmugOtVAbUaTQM3pFb07qvDjvzsditOQUO8foD5zPH4N9kf4=</latexit>

Lcls
<latexit sha1_base64="du77zhORjSo3TWUuQ5rHxS+D4fM=">AAACA3icbVDLSsNAFJ3UV62vqOBCN4NFcFWSutBlqRsXLlqwD2hDmEwn7dCZJMxMhBICbvwVNyKKuHXnF7hz47c4SbvQ1gMDZ865l3vv8SJGpbKsL6OwtLyyulZcL21sbm3vmLt7bRnGApMWDlkouh6ShNGAtBRVjHQjQRD3GOl448vM79wSIWkY3KhJRByOhgH1KUZKS6552OdIjTBiyXXqJvlH8AQzmaauWbYqVg64SOwZKdcOmt/0qf7RcM3P/iDEMSeBwgxJ2bOtSDkJEopiRtJSP5YkQniMhqSnaYA4kU6S35DCE60MoB8K/QIFc/V3R4K4lBPu6cpsSTnvZeJ/Xi9W/oWT0CCKFQnwdJAfM6hCmAUCB1QQrNhEE4QF1btCPEICYaVjK+kQ7PmTF0m7WrHPKtWmTqMOpiiCI3AMToENzkENXIEGaAEM7sADeAYvxr3xaLwab9PSgjHr2Qd/YLz/AD/0nEA=</latexit>

unlabeled

unlabeled

f t
<latexit sha1_base64="nJyXjJwU28pRKlZqQ/wuMb+6M5U=">AAAB83icbVC7TsMwFL0prxJeBUYWiwqJqUrKAAuigoWxSPQhNaFyXKe16jiR7SBVUX+DhQEErHwHOwvib3DaDtByJEtH59yre3yChDOlHefbKiwtr6yuFdftjc2t7Z3S7l5TxakktEFiHst2gBXlTNCGZprTdiIpjgJOW8HwKvdb91QqFotbPUqoH+G+YCEjWBvJ8yKsB0GYheM73S2VnYozAVok7oyULz7s8+T1y653S59eLyZpRIUmHCvVcZ1E+xmWmhFOx7aXKppgMsR92jFU4IgqP5tkHqMjo/RQGEvzhEYT9fdGhiOlRlFgJvOMat7Lxf+8TqrDMz9jIkk1FWR6KEw50jHKC0A9JinRfGQIJpKZrIgMsMREm5psU4I7/+VF0qxW3JNK9cYp1y5hiiIcwCEcgwunUINrqEMDCCTwAE/wbKXWo/VivU1HC9ZsZx/+wHr/AdO+lTE=</latexit>

fs
<latexit sha1_base64="U+aVs4PzsNGO2n5Iqlmn6Hs+pXo=">AAAB83icbVC7TsMwFL0prxJeBUYWiwqJqUrKAAuigoWxSPQhNaFyXKe16jiR7SBVUX+DhQEErHwHOwvib3DaDtByJEtH59yre3yChDOlHefbKiwtr6yuFdftjc2t7Z3S7l5TxakktEFiHst2gBXlTNCGZprTdiIpjgJOW8HwKvdb91QqFotbPUqoH+G+YCEjWBvJ8yKsB0GYheM71S2VnYozAVok7oyULz7s8+T1y653S59eLyZpRIUmHCvVcZ1E+xmWmhFOx7aXKppgMsR92jFU4IgqP5tkHqMjo/RQGEvzhEYT9fdGhiOlRlFgJvOMat7Lxf+8TqrDMz9jIkk1FWR6KEw50jHKC0A9JinRfGQIJpKZrIgMsMREm5psU4I7/+VF0qxW3JNK9cYp1y5hiiIcwCEcgwunUINrqEMDCCTwAE/wbKXWo/VivU1HC9ZsZx/+wHr/AdI6lTA=</latexit>

k-means
<latexit sha1_base64="3rKgNUr1iKGeUuY70rDH4ftXYrE=">AAAB9XicbVDLSgNBEJz1GeMr6tHLYhC8GHajoMegF48RzAOSGGYnvcmQmdllplcNS/7DiwdFvPov3vwbJ8keNLGgoajqprsriAU36HnfztLyyuraem4jv7m1vbNb2NuvmyjRDGosEpFuBtSA4ApqyFFAM9ZAZSCgEQyvJ37jAbThkbrDUQwdSfuKh5xRtNL9sI3whOmpBKrMuFsoeiVvCneR+BkpkgzVbuGr3YtYIkEhE9SYlu/F2EmpRs4EjPPtxEBM2ZD2oWWpohJMJ51ePXaPrdJzw0jbUuhO1d8TKZXGjGRgOyXFgZn3JuJ/XivB8LKTchUnCIrNFoWJcDFyJxG4Pa6BoRhZQpnm9laXDaimDG1QeRuCP//yIqmXS/5ZqXx7XqxcZXHkyCE5IifEJxekQm5IldQII5o8k1fy5jw6L8678zFrXXKymQPyB87nD/YYks8=</latexit>

L
s
MIM

<latexit sha1_base64="4tjtHYFjaml1OMDh0f9zlji0Cc4=">AAACA3icbZC7SgNBFIZnvcZ4W7XTZkgQUoXdWMQyaKNgIIK5QLIus5PZZMjshZlZISwLNj6FvY2FIrY+gK2d6MM4u0mhiT8MfPznHOac3wkZFdIwPrWFxaXlldXcWn59Y3NrW9/ZbYkg4pg0ccAC3nGQIIz6pCmpZKQTcoI8h5G2MzpN6+0bwgUN/Cs5DonloYFPXYqRVJat7/c8JIcYsfgisTPmXlw/ryfXwtaLRtnIBOfBnEKxVih9f1Xf7xu2/tHrBzjyiC8xQ0J0TSOUVoy4pJiRJN+LBAkRHqEB6Sr0kUeEFWc3JPBQOX3oBlw9X8LM/T0RI0+IseeoznRLMVtLzf9q3Ui6x1ZM/TCSxMeTj9yIQRnANBDYp5xgycYKEOZU7QrxEHGEpYotr0IwZ0+eh1albB6VK5cqjRMwUQ4cgAIoARNUQQ2cgQZoAgxuwQN4As/anfaovWivk9YFbTqzB/5Ie/sBwZqb9Q==</latexit>

L
t
MIM

<latexit sha1_base64="vfFY0sbadeNvQ/GWzNWz1ZM1rBI=">AAACA3icbZC7SgNBFIZnvcZ4W7XTZkgQUoXdWMQyaKNgIIK5QLIus5PZZMjshZlZISwLNj6FvY2FIrY+gK2d6MM4u0mhiT8MfPznHOac3wkZFdIwPrWFxaXlldXcWn59Y3NrW9/ZbYkg4pg0ccAC3nGQIIz6pCmpZKQTcoI8h5G2MzpN6+0bwgUN/Cs5DonloYFPXYqRVJat7/c8JIcYsfgisTPmXlw/ryfX0taLRtnIBOfBnEKxVih9f1Xf7xu2/tHrBzjyiC8xQ0J0TSOUVoy4pJiRJN+LBAkRHqEB6Sr0kUeEFWc3JPBQOX3oBlw9X8LM/T0RI0+IseeoznRLMVtLzf9q3Ui6x1ZM/TCSxMeTj9yIQRnANBDYp5xgycYKEOZU7QrxEHGEpYotr0IwZ0+eh1albB6VK5cqjRMwUQ4cgAIoARNUQQ2cgQZoAgxuwQN4As/anfaovWivk9YFbTqzB/5Ie/sBwx6b9g==</latexit>

�

����

w1

w2
...

wnc

�

����

<latexit sha1_base64="DRjWh60c2FkDeQp1+d7zfgrj2tk="></latexit>

LInSelf + LCrossSelf
<latexit sha1_base64="/NWrpitmX2mabSTb+z/4E93LNu0=">AAACI3icbZDLSsNAFIYn9VbrLSq4cRMsgiCUpC4UV6XdKLho0V6gDWEynbRDJ5MwMxFKyLu4celbiBsXSnHjQp/FSepC2/4w8PH/5zDnHDekREjT/NRyS8srq2v59cLG5tb2jr671xJBxBFuooAGvONCgSlhuCmJpLgTcgx9l+K2O6qlefsec0ECdifHIbZ9OGDEIwhKZTn6Zc+HcoggjW8SJ2Pux9fsFlMvOV2U1XggRBY7etEsmZmMebB+oVg5aHyTp+pz3dEnvX6AIh8ziSgUomuZobRjyCVBFCeFXiRwCNEIDnBXIYM+Fnac7ZgYx8rpG17A1WPSyNy/HTH0hRj7rqpMJxWzWWouyrqR9C7smLAwkpih6UdeRA0ZGOnBjD7hGEk6VgARJ2pWAw0hh0iqsxbUEazZleehVS5ZZ6VywypWqmCqPDgER+AEWOAcVMAVqIMmQOABvIA38K49aq/aRPuYlua035598E/a1w/qTqn9</latexit>

Figure 2: An overview of the PCS framework. In-domain and cross-domain self-supervision are performed between normalized feature
vectors f and prototypes µ computed by clustering vectors v in memory banks. Features with confident predictions (p) are used to
adaptively update classifier vectors w. MI maximization and classification loss are further used to extract discriminative features.

age colorization [77, 40], patch location prediction [13, 14],
image jigsaw puzzle [51], image inpainting [54] and ge-
ometric transformations [22, 16] have been shown to be
helpful. Currently, contrastive learning [3, 29, 52, 66, 49]
has achieved state-of-the-art performance on representation
learning [27, 10, 12, 11]. Most contrastive methods are
instance-wise, aiming to learn an embedding space where
samples from the same instance are pulled closer and sam-
ples from different instances are pushed apart [73, 10]. Re-
cently, contrastive learning based on prototypes has shown
promising results in representation learning [41, 2, 7, 19].

Self-supervised Learning for Domain Adaptation. Self-
supervision-based methods incorporate SSL losses into the
original task network [20, 21]. Reconstruction was first uti-
lized as self-supervised task in some early works [20, 21],
in which source and target data share the same encoder to
extract domain-invariant features. To capture both domain-
specific and shared properties, Bousmalis et al. [5] ex-
plicitly extracts image representations into two spaces,
one private for each domain and one shared across do-
mains. In [6], solving jigsaw puzzle [51] was leveraged
as a self-supervision task to solve domain adaptation and
generalization. Sun et al. [65] further proposed to per-
form domain adaptation by jointly learning multiple self-
supervision tasks. The same feature encoder is shared by
both source and target images, and the extracted features are
then fed into different self-supervision task heads: flip pre-
diction, image rotation prediction [22], and patch location
prediction [13]. Recently, based on instance discrimina-
tion [73], Kim et al. [39] proposed a cross-domain SSL ap-
proach for adaptation with few source labels. SSL has also
been incorporated for adaptation in other fields, including
point cloud recognition [1], medical imaging [33], action
segmentation [9], robotics [34], facial tracking [75], etc.

3. Approach
In few-shot unsupervised domain adaptation, we are

given a very limited number of labeled source images
Ds = {(xs

i , y
s
i )}

Ns

i=1, as well as unlabeled source images
Dsu = {(xsu

i )}Nsu

i=1 . In the target domain, we are only given
unlabeled target images Dtu = {(xtu

i )}
Ntu

i=1 . The goal is to
train a model on Ds, Dsu, and Dtu; and evaluate on Dtu.

The base model consists of a feature encoder F , a `2 nor-
malization layer, which outputs a normalized feature vector
f 2 Rd and a cosine similarity-based classifier C.

3.1. In-domain Prototypical Contrastive Learning
We learn a shared feature encoder F that extracts dis-

criminative features in both domains. Instance Discrimina-
tion [73] is employed in [39] to learn discriminative fea-
tures. As an instance-wise contrastive learning method, it
results in an embedding space where all instances are well
separated. Despite promising results, instance discrimina-
tion has a fundamental weakness: the semantic structure of
the data is not encoded by the learned representations. This
is because two instances are treated as negative pairs as long
as they are from different samples, regardless of their se-
mantics. For a single domain, ProtoNCE [41] is proposed
to learn semantic structure of the data by performing iter-
ative clustering and representation learning. The goal is to
drive features within the same cluster to become more ag-
gregated and features in different clusters further apart.

However, naively applying ProtoNCE to Ds[Dsu[Dtu

in our domain adaptation setting would cause potential
problems. Primarily due to the domain shift, images of
different classes from different domains can be incorrectly
aggregated into the same cluster, and images of the same
class from different domains can be mapped into clusters



that are far apart. To mitigate these problems, we propose
to perform prototypical contrastive learning separately in
Ds [ Dsu and in Dtu. This aims to prevent the incorrect
clustering of images across domains and indiscriminative
feature learning.

Specifically, two memory banks V s and V t are main-
tained for source and target respectively:

V s = [vs
1, · · · ,vs

(Ns+Nsu)], V t = [vt
1, · · · ,vt

Ntu
], (1)

where vi is the stored feature vector of xi, initialized with
fi and updated with a momentum m after each batch:

vi  mvi + (1�m)fi. (2)

In order for in-domain prototypical contrastive learning, k-
means clustering is performed on V s and V t to get source
clusters Cs = {C

(s)
1 , C

(s)
2 , . . . , C

(s)
k } and similarly Ct

with normalized source prototypes {µ
s
j}

k
j=1 and normalized

target prototypes {µ
t
j}

k
j=1. Specifically, µ

s
j =

us
j

kus
jk

, where

us
j = 1

|C(s)
j |

P
vs

i 2C(s)
j

vs
i . We explain only on the source

domain for succinct notation, all operations are performed
on target similarly.

During training, with the feature encoder F , we com-
pute a feature vector fs

i = F (xs
i ). To perform in-domain

prototypical contrastive learning, we compute the similar-
ity distribution vector between fs

i and {µ
s
j}

k
j=1 as P

s
i =

[P s
i,1, P

s
i,2, . . . , P

s
i,k], with

P
s
i,j =

exp(µs
j · fs

i /�)
Pk

r=1 exp(µs
r · fs

i /�)
, (3)

where � is a temperature value determining the level of con-
centration. Then the in-domain prototypical contrastive loss
can be written as:

LPC =
Ns+NsuX

i=1

LCE(P s
i , cs(i))+

NtuX

i=1

LCE(P t
i , ct(i)) (4)

where cs(·) and ct(·) return the cluster index of the instance.
Due to the randomness in clustering, we perform k-means
on the samples M times with different number of clusters
{km}

M
m=1. Moreover, in the FUDA setting, since the num-

ber of classes nc is known, we set km = nc for most m.
The overall loss for in-domain self-supervision is:

LInSelf =
1

M

MX

m=1

L
(m)
PC (5)

3.2. Cross-domain Instance-Prototype SSL
In order to explicitly enforce learning domain-aligned

and more discriminative features in both source and target

Problem with
Instance-Instance Matching

Instance-Prototype Matching
(Ours)

Figure 3: Comparison of cross-domain instance-instance (I-I)
matching [39] (left) and our cross-domain instance-prototype (I-P)
matching (right). Left: I-I incorrectly matches all orange samples
to the same blue sample. Right: I-P robustly matches samples to
the correct prototypes.

domains, we perform cross-domain instance-prototype self-
supervised learning.

Many previous works focus on domain alignment via
discrepancy minimization or adversarial learning. However,
these methods provide inferior performance or have unsta-
ble training. Moreover, most of them focus on distribution
matching, without considering semantic similarity match-
ing across domains. Instance-instance matching [39] is pro-
posed to match an instance i to another instance j in the
other domain with the most similar representation. How-
ever, due to the domain gap, instances can be easily mapped
to instances of different classes in the other domain. In
some cases, if an outlier in one domain is extremely close
to the other domain, it will be matched to all the instances
in the other domain, as illustrated in Figure 3.

Instead, our method discovers positive matching as well
as negative matchings between instance and cluster proto-
types in different domains. To find a matching for an in-
stance i, we perform entropy minimization on the similarity
distribution vector between its representation, e.g. fs

i and
the centroids of the other domain, e.g. {µ

t
j}

k
j=1.

Specifically, given feature vector fs
i in the source do-

main, and centroids {µ
t
j}

k
j=1 in the target domain, we

first compute the similarity distribution vector P
s )t
i =

[P s )t
i,1 , . . . , P

s )t
i,k ], in which

P
s )t
i,j =

exp(µt
j · fs

i /⌧)
Pk

r=1 exp(µt
r · fs

i /⌧)
. (6)

Then we minimize the entropy of P
s )t
i , which is:

H(P s )t
i ) = �

kX

j=1

P
s )t
i,j log P

s )t
i,j . (7)

Similarly, we can compute H(P t )s
i ), and the final loss for

cross-domain instance-prototype SSL is:

LCrossSelf =
Ns+NsuX

i=1

H(P s )t
i ) +

NtuX

i=1

H(P t )s
i ) (8)



3.3. Adaptive Prototypical Classifier Learning
The goal of this section is to learn a better domain-

aligned, discriminative feature encoder F and more impor-
tantly, a cosine classifier C that could achieve high accuracy
on the target domain.

The cosine classifier C consists of weight vectors W =
[w1,w2, . . . ,wnc ], where nc denotes the total number of
classes, and a temperature T . The output of C, 1

T WTf is
fed into a softmax layer � to obtain the final probabilistic
output p(x) = �( 1

T WTf). With the availability of the la-
beled set Ds, it is straightforward to train F and C with a
standard cross-entropy loss for classification:

Lcls = E(x,y)2Ds
LCE(p(x), y) (9)

However, since Ds is quite small under FUDA setting, only
training with Lcls is hard to get a C with high performance
on the target.

Adaptive Prototype-Classifier Update (APCU) Note
that for C to classify samples correctly, the direction of a
weight vector wi needs to be representative of features of
the corresponding class i. This indicates that the meaning
of wi coincide with the ideal cluster prototype of class i.
We propose to use an estimate of the ideal cluster proto-
types to update W. Yet the computed {µ

s
j} and {µ

t
j} can-

not be naively used for this purpose, not only because the
correspondence between {wi} and {µj} is unknown, but
also the k-means result may contain very impure clusters,
leading to non-representative prototypes.

We use the few-shot labeled data as well as samples
with high-confident predictions to estimate the prototype
for each class. Formally, we define D

(i)
s = {x|(x, y) 2

Ds, y = i} and denote by D
(i)
su and D

(i)
tu the set of sam-

ples with high-confident label i in source and target, respec-
tively. With p(x) = [p(x)1, . . . ,p(x)nc

], D
(i)
su = {x|x 2

Dsu,p(x)i > t}, where t is a confidence threshold; and
similarly for D

(i)
tu . Then the estimate of wi from source and

target domain can be computed as:

ŵs
i =

1

|D
(i)
s+ |

X

x2D(i)

s+

V s(x); ŵt
i =

1

|D
(i)
tu |

X

x2D(i)
tu

V t(x)

(10)
where D

(i)
s+ = D

(i)
s [D

(i)
su and V (x) returns the representa-

tion in memory bank corresponding to x.
With only few labeled samples in source, it is hard to

learn a representative prototype shared across domains. In-
stead of directly employing a global prototype for a class
i, we further propose to update wi in an domain adaptive
manner, with ŵs

i during early training stage and with ŵt
i

at later stage. This is because that ŵs
i is more robust in

early training stage due to the few labeled source samples,

while ŵt
i would be more representative later for target do-

main to get better adaptation performance. Specifically, we
use |D

(i)
tu | to determine whether ŵt

i is robust to use:

wi =

(
unit(ŵs

i ) if |D
(i)
tu | < tw

unit(ŵt
i) otherwise

(11)

where unit(·) normalizes the input vector and tw is a
threshold hyper-parameter.

Mutual Information Maximization In order for the
above unified prototype-classifier learning paradigm to
work well, the network is desired to have enough confi-
dent predictions, e.g. |D

(i)
| > tw, for all classes to get

robust ŵs
i and ŵt

i for i = 1, . . . , nc. First, to promote
the network to have diversified outputs over the dataset,
we maximize the entropy of expected network prediction
H(Ex2D[p(y|x; ✓)]), where ✓ denotes learnable parameters
in both F and C, and D = Ds[Dsu[Dtu. Second, in order
to get high-confident prediction for each sample, we lever-
age entropy minimization on the network output which has
shown efficacy in label-scarce scenarios [25, 4]. These two
desired behaviors turn out to be equivalent to maximizing
the mutual information between input and output:

I(y;x) = H(p0)� Ex[H(p(y|x; ✓))], (12)

where the prior distribution p0 is given by Ex[p(y|x; ✓)],
and the detailed derivation is presented in the supplemen-
tary material. We can get the objective as:

LMIM = �I(y;x) (13)

3.4. PCS Learning for FUDA
The PCS learning framework performs in-domain

prototypical contrastive learning, cross-domain instance-
prototype self-supervised learning, and unified adaptive
prototype-classifier learning. Together with APCU in Eq.
11, the overall learning objective is:

LPCS = Lcls + �in · LInSelf

+ �cross · LCrossSelf + �mim · LMIM
(14)

4. Experiments
4.1. Experimental Setting
Datasets. We evaluate our approach on four public
datasets and choose labeled images in source domain based
on previous work [39]. Office [59] is a real-world dataset
for domain adaptation tasks. It contains 3 domains (Ama-
zon, DSLR, Webcam) with 31 classes. Experiments are
conducted with 1-shot and 3-shots source labels per class
in this dataset. Office-Home [70] is a more difficult dataset



Table 1: Adaptation accuracy (%) comparison on 1-shot and 3-shots per class on the Office dataset.

Method Office: Target Acc. on 1-shot / 3-shots

A!D A!W D!A D!W W!A W!D Avg

SO 27.5 / 49.2 28.7 / 46.3 40.9 / 55.3 65.2 / 85.5 41.1 / 53.8 62.0 / 86.1 44.2 / 62.7
MME [60] 21.5 / 51.0 12.2 / 54.6 23.1 / 60.2 60.9 / 89.7 14.0 / 52.3 62.4 / 91.4 32.3 / 66.5
CDAN [45] 11.2 / 43.7 6.2 / 50.1 9.1 / 65.1 54.8 / 91.6 10.4 / 57.0 41.6 / 89.8 22.2 / 66.2
SPL [72] 12.0 / 77.1 7.7 / 80.3 7.3 / 74.2 7.2 / 93.5 7.2 / 64.4 10.2 / 91.6 8.6 / 80.1
CAN [38] 25.3 / 48.6 26.4 / 45.3 23.9 / 41.2 69.4 / 78.2 21.2 / 39.3 67.3 / 82.3 38.9 / 55.8
MDDIA [35] 45.0 / 62.9 54.5 / 65.4 55.6 / 67.9 84.4 / 93.3 53.4 / 70.3 79.5 / 93.2 62.1 / 75.5
CDS [39] 33.3 / 57.0 35.2 / 58.6 52.0 / 67.6 59.0 / 86.0 46.5 / 65.7 57.4 / 81.3 47.2 / 69.3

DANN + ENT [18] 32.5 / 57.6 37.2 / 54.1 36.9 / 54.1 70.1 / 87.4 43.0 / 51.4 58.8 / 89.4 46.4 / 65.7
MME + ENT 37.6 / 69.5 42.5 / 68.3 48.6 / 66.7 73.5 / 89.8 47.2 / 63.2 62.4 / 95.4 52.0 / 74.1
CDAN + ENT 31.5 / 68.3 26.4 / 71.8 39.1 / 57.3 70.4 / 88.2 37.5 / 61.5 61.9 / 93.8 44.5 / 73.5
CDS + ENT 40.4 / 61.2 44.7 / 66.7 66.4 / 73.1 71.6 / 90.6 58.6 / 71.8 69.3 / 86.1 58.5 / 74.9
CDS + MME + ENT 39.4 / 61.6 43.6 / 66.3 66.0 / 74.5 75.7 / 92.1 53.1 / 73.0 70.9 / 90.6 58.5 / 76.3
CDS + CDAN + ENT 52.6 / 65.1 55.2 / 68.8 65.7 / 71.2 76.6 / 88.1 59.7 / 71.0 73.3 / 87.3 63.9 / 75.3
CDS / MME + ENT† 55.4 / 75.7 57.2 / 77.2 62.8 / 69.7 84.9 / 92.1 62.6 / 69.9 77.7 / 95.4 65.3 / 80.0
CDS / CDAN + ENT† 53.8 / 78.1 65.6 / 79.8 59.5 / 70.7 83.0 / 93.2 57.4 / 64.5 77.1 / 97.4 66.1 / 80.6

PCS (Ours) 60.2 / 78.2 69.8 / 82.9 76.1 / 76.4 90.6 / 94.1 71.2 / 76.3 91.8 / 96.0 76.6 / 84.0
Improvement +4.8 / +0.1 +4.2 / +3.1 +9.7 / +1.9 +5.7 / +0.9 +8.6 / +3.3 +14.1 / -1.4 +10.5 / +3.4

† Two-stage training results reported in [39].

Table 2: Performance contribution of each part in PCS framework on Office.

Method Office: Target Acc. on 1-shot / 3-shots

A!D A!W D!A D!W W!A W!D Avg

Lcls 27.5 / 49.2 28.7 / 46.3 40.9 / 55.3 65.2 / 85.5 41.1 / 53.8 62.0 / 86.1 44.2 / 62.7
+LInSelf 39.0 / 55.6 38.6 / 55.1 47.2 / 68.5 71.7 / 89.4 50.9 / 68.4 65.1 / 90.6 52.1 / 71.3
+LCrossSelf 47.2 / 71.1 52.7 / 70.6 59.0 / 75.5 76.4 / 90.3 58.5 / 74.1 66.9 / 91.8 60.1 / 78.9
+LMIM 52.8 / 73.5 57.5 / 71.2 67.2 / 76.3 78.9 / 91.4 64.2 / 74.3 68.7 / 92.2 64.9 / 79.8
+APCU (PCS) 60.2 / 78.2 69.8 / 82.9 76.1 / 76.4 90.6 / 94.1 71.2 / 76.3 91.8 / 96.0 76.6 / 84.0
PCS w/o MIM 59.0 / 75.9 58.6 / 76.5 76.2 / 76.4 87.8 / 93.2 68.7 / 74.7 89.8 / 95.0 73.5 / 82.0

than Office, which consists of 4 domains (Art, Clipart, Prod-
uct, Real) in 65 classes. Following [39], we look into the
settings with 3% and 6% labeled source images per class,
which means each class has 2 to 4 labeled images on av-
erage. VisDA-2017 [56] is a challenging simulation-to-real
dataset containing over 280K images across 12 classes. We
validate our model on settings with 0.1% and 1% labeled
source images per class as suggested in [39]. Domain-
Net [55] is a large-scale domain adaptation benchmark.
Since some domains and classes are noisy, we follow [60]
and use a subset containing four domains (Clipart, Real,
Painting, Sketch) with 126 classes. We show results on set-
tings with 1-shot and 3-shots source labels on this dataset.

Implementation Details. We use ResNet-101 [30] (for
DomainNet) and ResNet-50 (for other datasets) pre-trained
on ImageNet [57] as our backbones. To enable a fair com-
parison with [39], we replaced the last FC layer with a 512-
D randomly initialized linear layer. L2-normalizing are per-
formed on the output features. We use k-means GPU imple-
mentation in faiss [37] for efficient clustering. We use SGD

with momentum of 0.9, a learning rate of 0.01, a batch size
of 64. More implementation details can be found in the sup-
plementary material.

4.2. Results on FUDA

Baselines. SO is a model only trained using the labeled
source images. CDAN [45] and MDDIA [35] are both
state-of-the-art methods in UDA with a domain classifier
to perform domain alignment. MME [60] minimizes the
conditional entropy of unlabeled target data with respect to
the feature extractor and maximizes it with respect to the
classifier. CAN [38] uses clustering information to con-
trast discrepancy of source and target domain. CDS [39] is
a instance-based cross-domain self-supervised pre-training,
which can be used for other domain adaptation methods and
form two-stage methods, such as CDS / CDAN and CDS
/ MME. We re-implement CDS into an end-to-end version
by adding losses in two stage together and tuning the weight
for different losses. We also investigate the one-stage ver-
sion of the methods above (CDS + CDAN, CDS + MME).
Following [39], entropy minimization (ENT) on source is



Table 3: Adaptation accuracy (%) comparison on 3% and 6% labeled samples per class on the Office-Home dataset.

Method Office-Home: Target Acc. (%)

Ar!Cl Ar!Pr Ar!Rw Cl!Ar Cl!Pr Cl!Rw Pr!Ar Pr!Cl Pr!Rw Rw!Ar Rw!Cl Rw!Pr Avg

3% labeled source
SO 24.4 38.3 43.1 26.4 34.7 33.7 27.5 26.5 42.6 41.2 29.0 52.3 35.0
MME [60] 4.5 15.4 25.0 28.7 34.1 37.0 25.6 25.4 44.9 39.3 29.0 52.0 30.1
CDAN [45] 5.0 8.4 11.8 20.6 26.1 27.5 26.6 27.0 40.3 38.7 25.5 44.9 25.2
MDDIA [35] 21.7 37.3 42.8 29.4 43.9 44.2 37.7 29.5 51.0 47.1 29.2 56.4 39.1
CAN [38] 17.1 30.5 33.2 22.5 34.5 36.0 18.5 19.4 41.3 28.7 18.6 43.2 28.6
CDS [39] 33.5 41.1 41.9 45.9 46.0 49.3 44.7 37.8 51.0 51.6 35.7 53.8 44.4

DANN + ENT [18] 19.5 30.2 38.1 18.1 21.8 24.2 31.6 23.5 48.1 40.7 28.1 50.2 31.2
MME + ENT 31.2 35.2 40.2 37.3 39.5 37.4 48.7 42.9 60.9 59.3 46.4 58.6 44.8
CDAN + ENT 20.6 31.4 41.2 20.6 24.9 30.6 33.5 26.5 56.7 46.9 29.5 48.4 34.2
CDS + ENT 39.2 46.1 47.8 49.9 50.7 54.1 48.0 43.5 59.3 58.6 44.3 59.3 50.1
CDS + MME + ENT 39.4 48.0 52.1 50.0 52.3 56.4 47.8 44.2 60.6 61.1 45.3 62.1 51.6
CDS + CDAN + ENT 43.8 55.5 60.2 51.5 56.4 59.6 51.3 46.4 64.5 62.2 52.4 70.2 56.2
CDS / MME + ENT† 41.7 49.4 57.8 51.8 52.3 55.9 54.3 46.2 69.0 65.6 52.2 68.2 55.4
CDS / CDAN + ENT† 37.7 49.2 56.5 49.8 51.9 55.9 50.0 42.3 68.1 63.1 48.7 67.5 53.4
PCS (Ours) 42.1 61.5 63.9 52.3 61.5 61.4 58.0 47.6 73.9 66.0 52.5 75.6 59.7
Improvement -1.7 +6.0 +6.1 +3.7 +5.1 +1.8 +3.7 +1.2 +4.9 +0.4 +0.1 +5.4 +3.5

6% labeled source
SO 28.7 45.7 51.2 31.9 39.8 44.1 37.6 30.8 54.6 49.9 36.0 61.8 42.7
MME [60] 27.6 43.2 49.5 41.1 46.6 49.5 43.7 30.5 61.3 54.9 37.3 66.8 46.0
CDAN [45] 26.2 33.7 44.5 34.8 42.9 44.7 42.9 36.0 59.3 54.9 40.1 63.6 43.6
MDDIA [35] 25.1 44.5 51.9 35.6 46.7 50.3 48.3 37.1 64.5 58.2 36.9 68.4 50.3
CAN [38] 20.4 34.7 44.7 29.0 40.4 38.6 33.3 21.1 53.4 36.8 19.1 58.0 35.8
CDS [39] 38.8 51.7 54.8 53.2 53.3 57.0 53.4 44.2 65.2 63.7 45.3 68.6 54.1

DANN + ENT [18] 22.4 32.9 43.5 23.2 30.9 33.3 33.2 26.9 54.6 46.8 32.7 55.1 36.3
MME + ENT 37.2 42.4 50.9 46.1 46.6 49.1 53.5 45.6 67.2 63.4 48.1 71.2 51.8
CDAN + ENT 23.1 35.5 49.2 26.1 39.2 43.8 44.7 33.8 61.7 55.1 34.7 67.9 42.9
CDS + ENT 42.9 55.5 59.5 55.2 55.1 59.1 54.3 46.9 68.1 65.7 50.6 71.5 57.0
CDS + MME + ENT 41.7 58.1 61.7 55.7 56.2 61.3 54.6 47.3 68.6 66.4 50.3 72.1 57.8
CDS + CDAN + ENT 45.4 60.4 65.5 54.9 59.2 63.8 55.4 49.0 71.6 66.6 54.1 75.4 60.1
CDS / MME + ENT† 44.1 51.6 63.3 53.9 55.2 62.0 56.5 46.6 70.9 67.7 54.7 74.7 58.4
CDS / CDAN + ENT† 39.0 51.3 63.1 51.0 55.0 63.6 57.8 45.9 72.8 65.8 50.4 73.5 57.4
PCS (Ours) 46.1 65.7 69.2 57.1 64.7 66.2 61.4 47.9 75.2 67.0 53.9 76.6 62.6
Improvement +0.7 +5.3 +3.7 +2.2 +5.5 +2.4 +3.6 -1.1 +2.4 -0.7 -0.8 +1.2 +2.5

† Two-stage training results reported in [39].

Table 4: Adaptation accuracy (%) comparison on 0.1% and 1%
labeled samples per class on the VisDA-2017 dataset.

Method VisDA: Target Acc. (%)
0.1% Labeled 1% Labeled

SO 47.9 51.4
MME [60] 55.6 69.4
CDAN [45] 58.0 61.5
MDDIA [35] 68.9 71.3
CAN [38] 51.3 57.2
CDS [39] 34.2 67.5

DANN + ENT [18] 44.5 50.2
MME + ENT 54.0 66.1
CDAN + ENT 57.7 58.1
CDS + ENT 49.8 75.3
CDS + ENT + MME 60.0 78.3
CDS / MME + ENT† 62.5 69.4
CDS / CDAN + ENT† 69.0 69.1

PCS (Ours) 78.0 79.0
Improvement +9.0 +0.7

† Two-stage training results reported in [39].

added to previous DA methods to obtain better baseline per-
formance.

We compare the proposed PCS with state-of-the-art
methods on FUDA (adaptation with few source labels). Ex-

Table 5: Adaptation accuracy (%) comparison on 1-shot and 3-
shots per class on the DomainNet dataset.

Method DomainNet: Target Acc. (%)
R)C R)P R)S P)C P)R C)S S)P Avg

1-shot labeled source
SO 18.4 30.6 16.7 16.2 28.9 12.7 10.5 19.1
MME [60] 13.8 29.2 9.7 16.0 26.0 13.4 14.4 17.5
CDAN [45] 16.0 25.7 12.9 12.6 19.5 7.2 8.0 14.6
MDDIA [35] 18.0 30.6 15.9 15.4 27.4 9.3 10.2 18.1
CAN [38] 18.3 22.1 16.7 13.2 23.9 11.1 12.1 16.8

CDS [39] 16.7 24.4 11.1 14.1 15.9 13.4 19.0 16.4
CDS + ENT 21.7 30.1 18.2 17.4 20.5 18.6 22.7 21.5
CDS + MME + ENT 21.2 28.8 15.5 15.8 17.6 19.0 20.7 19.8

PCS (Ours) 39.0 51.7 39.8 26.4 38.8 23.7 23.6 34.7
Improvement +17.3 +21.1 +21.6 +9.0 +9.9 +4.7 +0.9 +13.2

3-shots labeled source
SO 30.2 44.2 25.7 24.6 49.8 24.2 23.2 31.7
MME [60] 22.8 46.5 14.5 25.1 50.0 20.1 24.9 29.1
CDAN [45] 30.0 40.1 21.7 21.4 40.8 17.1 19.7 27.3
MDDIA [35] 41.4 50.7 37.4 31.4 52.9 23.1 24.1 37.3
CAN [38] 28.1 33.5 25 24.7 46.9 23.3 20.1 28.8

CDS [39] 35.0 43.8 36.7 34.1 36.8 31.1 34.5 36.0
CDS + ENT 44.5 52.2 40.9 40.0 47.2 33.0 40.1 42.5
CDS + MME + ENT 43.8 54.9 41.1 38.9 45.9 32.8 38.7 42.3

PCS (Ours) 45.2 59.1 41.9 41.0 66.6 31.9 37.4 46.1
Improvement +0.7 +6.9 +0.8 +1.0 +13.7 -0.9 -2.7 +3.6

tensive experiments are conducted on Office, Office-Home,
VisDA-2017 and DomainNet, with the results presented in
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Figure 4: t-SNE visualization of ours and baselines on Office (left) and Office-Home (right). Top row: Coloring represents the class of
each sample. Features with PCS are more discriminative than the ones with other methods. Bottom row: Cyan represents source features
and Red represents target features. Feature from PCS are better-aligned between domains compared to other methods.

Table 1, 3, 4, and 5, respectively. We can see that PCS
outperforms the best state-of-the-arts in all the benchmarks,
with large improvements: 10.5% and 3.4% on Office, 4.3%
and 4.2% on Office-Home, 9.0% and 0.7% on VisDA,
13.2% and 3.6% on DomainNet. If we look at the result of
each domain pair in each dataset (e.g. D ! A in Office),
PCS outperforms previous best in 47 out of 52 settings.
Finally, as the number of labeled samples decreases, PCS
shows larger performance improvements against the pre-
vious best methods, which demonstrates PCS is extremely
beneficial in label-scarce adaptation scenarios.

4.3. Ablation Study and Analysis
Next, we investigate the effectiveness of each component

in PCS on Office. Table 2 shows that adding each compo-
nent contributes to the finally results without any perfor-
mance degradation. Comparing the last row in Table 2 and
Table 1, we can see even without MIM, PCS still outper-
forms all previous methods.

We plot the learned features with t-SNE [48] on the
DSLR-to-Amazon setting in Office, and Real-to-Clipart in
Office-Home respectively in left and right of Figure 4. In
the top row, the color represents the class of each sample;
while in the bottom row, cyan represents source samples
and red represents target samples. Compared to ImageNet
pre-training and CDS, it qualitatively shows that PCS well
clusters samples with the same class in the feature space;
thus, PCS favors more discriminative features. Also, the
features from PCS are more closely aggregated than Ima-
geNet pre-training and CDS, which demonstrates that PCS
learns a better semantic structure of the datasets.

4.4. Sample Efficiency
We compare our method with other state-of-the-art

methods on Office dataset (DSLR as source and Amazon
as target) with a varying number of source labels. From
Figure 5, we can see that PCS outperforms all SOTA meth-
ods in all settings with different number of labeled samples.
Moreover, our method is very label-efficient: a) For 1-shot

Figure 5: Sample efficiency comparison from DSLR to Amazon
in Office.

image per class (31 labeled source images in total), PCS
can achieve 76.1% accuracy. b) For the fully-labeled set-
ting (498 labeled source images in total), PCS can achieve
77.4% accuracy. c) With 94% less labeled source images,
the performance degradation of our method is only 1.3%.
In short, with less labeled source data, PCS outperforms
other works by a larger margin.

5. Conclusion

In this paper, we investigated FUDA where only few-
labeled source samples are available. We proposed a novel
Prototypical Cross-domain Self-supervised learning (PCS)
framework that leverages prototypes for in-domain and
cross-domain self-supervised learning, as well as adaptive
prototype-classifier learning. We demonstrated the superi-
ority of PCS over previous best methods with extensive ex-
perimental results, setting a new state of the art for FUDA.
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